A tridiagonal matrix construction by the quotient difference recursion formula in the case of multiple eigenvalues
نویسندگان
چکیده
In this paper, we grasp an inverse eigenvalue problem which constructs a tridiagonal matrix with specified multiple eigenvalues, from the viewpoint of the quotient difference (qd) recursion formula. We also prove that the characteristic and the minimal polynomials of a constructed tridiagonal matrix are equal to each other. As an application of the qd formula, we present a procedure for getting a tridiagonal matrix with specified multiple eigenvalues. Examples are given through providing with four tridiagonal matrices with specified multiple eigenvalues.
منابع مشابه
On the Remarkable Formula for Spectral Distance of Block Southeast Submatrix
This paper presents a remarkable formula for spectral distance of a given block normal matrix $G_{D_0} = begin{pmatrix} A & B \ C & D_0 end{pmatrix} $ to set of block normal matrix $G_{D}$ (as same as $G_{D_0}$ except block $D$ which is replaced by block $D_0$), in which $A in mathbb{C}^{ntimes n}$ is invertible, $ B in mathbb{C}^{ntimes m}, C in mathbb{C}^{mti...
متن کاملA note on parameter differentiation of matrix exponentials, with applications to continuous-time modelling
We propose a new analytic formula for evaluating the derivatives of a matrix exponential. In contrast to the diagonalization method, eigenvalues and eigenvectors do not appear explicitly in the derivation, although we show that a necessary and sufficient condition for the validity of the formula is that the matrix has distinct eigenvalues. The new formula expresses the derivatives of a matrix e...
متن کاملInverse Spectral Problems for Tridiagonal N by N Complex Hamiltonians ⋆
In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spec...
متن کاملAdjusting the Rayleigh Quotient in Semiorthogonal Lanczos Methods Adjusting the Rayleigh Quotient in Semiorthogonal Lanczos Methods
In a semiorthogonal Lanczos algorithm, the orthogonality of the Lanczos vectors is allowed to deteriorate to roughly the square root of the rounding unit, after which the current vectors are reorthogonalized. A theorem of Simon 4] shows that the Rayleigh quotient | i.e., the tridiagonal matrix produced by the Lanczos recursion | contains fully accurate approximations to the Ritz values in spite...
متن کاملSome Modifications to Calculate Regression Coefficients in Multiple Linear Regression
In a multiple linear regression model, there are instances where one has to update the regression parameters. In such models as new data become available, by adding one row to the design matrix, the least-squares estimates for the parameters must be updated to reflect the impact of the new data. We will modify two existing methods of calculating regression coefficients in multiple linear regres...
متن کامل